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Results are presented from an experimental investigation of the dynamics of driven 
rotating flows in stadium-shaped domains. The work was motivated by questions 
concerning the typicality of low-dimensional dynamical phenomena which are found 
in Taylor-Couette flow between rotating circular cylinders. In such a system, there 
is continuous azimuthal symmetry and travelling-wave solutions are found. In the 
present study, this symmetry is broken by replacing the stationary outer circular 
cylinder with one which has a stadium-shaped cross-section. Thus there is now only 
discrete symmetry in the azimuthal direction, and travelling waves are no longer 
observed. To begin with, the two-dimensional flow field was investigated using 
numerical techniques. This was followed by an experimental study of the dynamics 
of flow in systems with finite vertical extent. Configurations involving both right- 
circular and tapered inner cylinders were considered. Dynamics were observed which 
correspond to known mechanisms from the theory of finite-dimensional dynamical 
systems. However, flow behaviour was also observed which cannot be classified in this 
way. Thus it is concluded that while certain low-dimensional dynamical phenomena do 
persist with breaking of the continuous azimuthal symmetry embodied in the Taylor- 
Couette system, sufficient reduction of symmetry admits behaviour at moderately low 
Reynolds number which is without any low-dimensional characteristics. 

1. Introduction 
A typical experience in the study of fluid dynamics is that increasing the Reynolds 

number for a given flow field leads to a change from regular to irregular behaviour. 
Much attention has been directed towards those fluid systems which go through a 
definite sequence of instabilities in this respect, since it is often possible to analyse 
such problems using hydrodynamic stability theory, while at the same time carrying 
out careful experimental investigations. The success of these two approaches in 
combination is reflected in our understanding of problems such as Rayleigh-Binard 
convection (Libchaber & Maurer 1980; Gollub & Benson 1980) or Taylor-Couette 
flow (Di Prima & Swinney 1981; Mullin 1993a). However, it is interesting to ask just 
how typical this well-defined behaviour is. It is not unreasonable to suppose that it 
may be special to closed flows, as opposed to open flows such as boundary layers or 
wakes. In the. case of Taylor-Couette flow in particular, the sense of atypicality is 
heightened by the existence of cells and travelling waves which persist to very high 
Reynolds numbers (Smith & Townsend 1982). 
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The present study is an attempt to establish the typicality or otherwise of occur- 
rences of low-dimensional behaviour in closed recirculating flows between concentric 
cylinders. The most familiar problem in this class is Taylor-Couette flow between 
concentric circular cylinders. This system is characterized by continuous SO(2)  sym- 
metry in the azimuthal direction which supports travelling waves that propagate 
around the annulus. However, if this non-generic symmetry is broken, then travelling- 
wave solutions are prohibited. An approach which has been adopted in previous 
investigations (Snyder 1968; Mullin, Lorenzen & Pfister 1983; Mullin & Lorenzen 
1985; Kobine & Mullin 1994) is to change the shape of the stationary outer cylinder, 
thereby affecting the azimuthal symmetry of the domain in which flow occurs. It has 
been the purpose of recent studies, including the present one, to determine whether or 
not the low-dimensional bifurcation phenomena which are observed in the standard 
system (see Mullin 1993a, for example) are structurally stable to this breaking of the 
continuous azimuthal symmetry. 

The role played by azimuthal symmetry in deciding the form of steady flows appears 
to have been considered first by Terada & Hattori (1926). They performed a series 
of experiments in which flow was driven between a stationary circular outer cylinder 
and a variety of rotating inner devices. These included a concentric circular cylinder 
with a stationary barrier across the gap, an eccentric circular cylinder and finally a 
pair of circular cylinders. In all these cases the continuous azimuthal symmetry of 
the standard problem was broken by the change in geometry. Nevertheless, steady 
cellular flows similar to Taylor-vortex flow were observed in each case for sufficient 
angular speed of the rotating element. 

A symmetry variant which has been studied extensively in more recent years has 
the outer circular cylinder replaced by one with square cross-section, while retaining 
the circular inner cylinder. The azimuthal symmetry of the flow domain is now that 
of the discrete 2 4  group. Such a system was first considered by Snyder (1968), who 
showed experimentally that there is a transition from featureless flow to steady cellular 
flow with increase of the speed of the inner cylinder. This cellular flow is equivalent 
to Taylor-vortex flow, although the cells are no longer axisymmetric. The solution 
structure of steady flows in this square system was investigated experimentally by 
Mullin & Lorenzen (1985) and Kobine & Mullin (1994). It was found that apart from 
minor differences the steady flows exhibit a bifurcation structure which is qualitatively 
the same as the one which is now well understood in Taylor-Couette flow. In addition, 
dynamic flow phenomena in the single-cell flow in the square system were studied 
by Kobine & Mullin (1994). A complicated but self-consistent solution structure was 
uncovered, consisting entirely of behaviour which can be described in the context 
of finite-dimensional dynamical systems. Central to this was the observation of a 
time-dependent motion which, when analysed as tmjectories in a reconstructed phase 
space, suggests dynamics of the type proposed by Sil'nikov (1965) involving an orbit 
which is homoclinic to a saddle-focus. Similar dynamics have been observed by 
Mullin & Price (1989) in a Taylor-Couette system with SO(2)  azimuthal symmetry. 

In this paper, we make a further reduction in the azimuthal symmetry by using as 
the outer cylinder a container whose cross-section is that of a stadium. The geometry 
is illustrated in figure l(a). There are two parallel sides and two semicircular ends to 
the stadium, with a rotating cylinder situated inside. Thus there is now only discrete 
Z2 symmetry azimuthally. Two different types of inner cylinder were used in the 
study. The first was a right-circular' cylinder, giving rise to mirror symmetry about 
the horizontal midplane of the domain (figure lb). The second type was a linearly 
tapered circular cylinder, leading to an asymmetric domain in the vertical direction 
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FIGURE 1. Geometry OF the stadium-shaped Taylor-Couette system: (a )  plan view; (b)  Front view 
OF system with right-circular cylinder; (c) Front view of system with tapered inner cylinder. 

(figure lc). The motivation for studying the flow in these stadium systems was that, by 
systematically reducing the symmetry to such an extent compared with the symmetries 
of the original and the square Taylor-Couette problems, it might be impossible for 
the flow dynamics to be described by simple low-dimensional mechanisms. If, on the 
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other hand, finite-dimensional behaviour could be observed, then it would support 
the findings of previous research which point to such behaviour being structurally 
stable to breaking of the SO(2) symmetry. 

We begin by considering in $2 the nature of the steady two-dimensional flow which is 
driven by a rotating right-circular cylinder inside a stationary stadium. The streamlines 
for this flow have been calculated using a truncated series solution of the equations 
for creeping flow. Then in $3 there is a description of the experimental apparatus 
and methods which were used for this study. The results which were obtained for 
time-dependent flows driven by a right-circular inner cylinder are presented in $4. The 
flows that were driven by the tapered rotating cylinder are considered in 95. Finally, 
we present conclusions in $6 based on the findings of this work. 

2. Structure of two-dimensional rotating flow in a stadium 
Studies of two-dimensional flows in systems that are geometrically similar to the 

present one have been carried out by Schumack, Schultz & Boyd (1992) and Hellou 
& Coutanceau (1992). Schumack et al. used a spectral element method to calculate 
the flow between a rotating circular cylinder and a container, similar to an ellipse, 
formed from two circular arcs. The two-dimensional flow consisted of approximately 
circular streamlines around the inner cylinder, with recirculation regions in both 
corner ends of the outer container. The problem tackled by Hellou & Coutanceau 
was that of two-dimensional flow driven by the rotation of a circular cylinder at 
the centre of a rectangular box. The solution was obtained analytically, using a 
truncated-series approach to the biharmonic equation, and confirmed experimentally, 
using flow visualization techniques. Both methods gave a flow field which comprised 
a main circular flow around the inner cylinder, with driven recirculations in the outer 
regions of the domain. 

Thus it is reasonable to expect that the two-dimensional flow for a rotating 
cylinder inside a stadium-shaped cylinder should be qualitatively the same as the flows 
discussed above. Indeed, all these systems can be viewed as truncated representations 
of the problem considered by Moffatt (1964) of two-dimensional flow driven by a 
rotating cylinder situated between two infinitely long parallel plates. Moffatt showed 
analytically that such a flow should consist of a rapidly decaying sequence of driven 
recirculations extending away in both directions from the cylinder. However, the 
analytical techniques used by Moffatt are not appropriate for the present case. In 
order to establish the exact nature of the stadium flow, we have calculated the two- 
dimensional streamline pattern using standard numerical methods. These methods 
are discussed briefly below, along with the results which were obtained. 

Our numerical technique is similar to that used by Hellou & Coutanceau (1992) 
in their calculation of two-dimensional flow driven by a rotating cylinder in a 
rectangular channel. It uses a least-squares method to fit a truncated series solution 
of the equations for creeping flow with the appropriate boundary conditions for 
the velocity. We begin by assuming that the inertia terms in the time-independent 
Navier-Stokes equations are negligible in comparison with the viscous terms. Thus 
we have a flow which is governed by the equations for creeping motion, namely 

( 1 4  -vp + pv2u = 0, 

v * u = o .  (1b) 
We adopt a Cartesian coordinate system with the z-axis coincident with the axis 
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of rotation, and restrict attention to two-dimensional flow where u = (u,u,O) and all 
terms involving the operator a/az vanish. Thus we may introduce a stream function 
y(x,y) such that u = ay/ay and u = -aw/ax. Applying the curl operator to both 
sides of (la) and rewriting in terms of y leads to the familiar biharmonic equation 

v4y = 0. (2) 

Thus the problem is essentially one of solving (2) with the appropriate boundary 
conditions. These are set by the no-slip condition which constrains the velocity to be 
zero everywhere on the stationary stadium and directed tangentially with constant 
magnitude on the rotating circular cylinder. 

Following Prosnak (1987), we represent the problem in the complex plane z = x+iy 
and work with the complex conjugate variables z, 2. The biharmonic equation becomes 

and this is directly integrable to give 

where f(z) and g ( z )  are arbitrary holomorphic functions. 
The functions f(z) and g ( z )  are then chosen so that the velocity boundary conditions 

are satisfied, subject to the restriction that the physical quantities of velocity, vorticity 
and pressure are single valued. For all but the most geometrically simple domains, 
the holomorphic functions contain an infinite number of terms, so in practice we 
truncate the series and perform a least-squares fit as first suggested by Bourot (1969) 
and recently applied by Hellou & Coutanceau (1992). The discrete symmetries of the 
stadium configuration allow us to work in the positive quadrant only, and we retain 
96 terms of the holomorphic series. 

One result of applying the above procedure to the present problem is the streamline 
plot shown in figure 2. This plot shows the right-hand half of the fluid domain (the 
other half is simply a reflection in x = 0), and it can be seen that the main and 
secondary flows found in elliptical and rectangular geometries are also present in this 
case. There is a main circulating flow around the inner cylinder, with recirculations 
to its left and right; our numerical studies indicate that these recirculations persist 
down to a cross-sectional length-to-breadth ratio of 1.2. The stream function values 
marked in figure 2 show that the recirculations are much weaker than the circulating 
flow, although they occupy a significant area within the flow domain. 

Knowledge of the two-dimensional flow field is important since it forms the basis 
of the more complicated three-dimensional flow structures which necessarily exist in 
a domain with finite vertical extent. In particular, the streamline plot in figure 2 
shows important features which are pertinent when choosing a measuring position 
from which dynamical information is to be obtained. Thus we choose to locate the 
measuring point in the shear layer between the inner and outer recirculations where 
contributions to the dynamics from both regions are more easily identified. Also, 
fluid elements in the shear layer close to the inner cylinder experience alternating 
conditions of deceleration and acceleration around the region due to the presence 
of the parallel sides and the recirculation regions. Information of this type proves 
essential in the interpretation of the experimental results of the study. 
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FIGURE 2. Streamlines for two-dimensional creeping flow driven by a rotating cylinder inside a 
stadium with = 0.824. Only the right-hand half of the domain is shown; numbers indicate stream 
function values. 

3. Experimental details 
In this section, we discuss the apparatus and techniques which were used in the 

experimental investigation. Three different flow rigs are described, followed by details 
of the measurement process. 

3.1. Mechanical components 
The first flow rig which was constructed had a right-circular inner cylinder and a 
stadium-shaped outer cylinder. The sides of the outer container were flat Perspex 
plates, and the ends were formed from a 165 mm length of Perspex cylinder which 
was cut in half. These four pieces were glued together on a former to give the required 
stadium shape. The perpendicular distance between the two parallel sides, and the 
diameter of the semicircular ends, was equal to 107.6 f 0.1 mm. The width of each of 
the two straight sides was equal to 109.8 f 0.1 mm. Thus this rig had a cross-sectional 
length-to-breadth ratio of 2.02. The inner cylinder was made of brass, and had a 
diameter of 88.66 & 0.01 mm. The stadium-shaped cylinder was set into a machined 
Perspex base, along with a circular PTFE bearing for the inner cylinder. The height 
of the flow domain was defined by the position of a horizontal PVC col.lar which 
fitted inside the stadium and around the right circular cylinder. This end-plate was 
supported from above by two metal rods which passed through the Perspex lid of the 
flow rig and were held by two screw grips. The working fluid was silicone oil with a 
kinematic viscosity v = 16.9 mrn2s-' at 21.5"C. 

A second flow rig was made to a very high tolerance in order to test the robustness 
of the results obtained with the apparatus described above. This stadium was made 
from two Perspex plates and the two halves of a 120 mm length of glass cylinder. 
The choice of glass as a material for the curved surfaces resulted in a more accurate 
radius than was the case when Perspex was used. The inner diameter of the glass 
cylinder was equal to 75.00 f 0.02 mm. The width of each straight side and the 
perpendicular distance between them were both equal to 75.00 0.05 mm. Thus 
the cross-sectional length-to-breadth ratio was equal to 2.00. Two different right- 
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circular inner cylinders were used, again machined out of brass. The diameters were 
equal to 60.00 kO.01 and 61.80f0.01 mm. The base and cover of this flow rig 
were made from aluminium, and each contained a PTFE bearing to support the 
inner cylinder. The flow region was bounded vertically by two PVC collars. One 
rested on the base of the flow rig, while the other was connected by metal rods 
to a micrometer screw assembly. In this way, the height of the flow domain could 
be varied between zero and 115 mm. Surrounding the two cylinders was a water 
jacket with plane Perspex walls, through which thermally regulated distilled water was 
pumped at 27.3"C. This had the effect of holding the temperature, and therefore also 
the viscosity, of the working fluid constant throughout the course of the experiments. 
As a further precaution, the entire flow rig was housed in a cabinet in which the 
air temperature was held at 27°C. For this rig, the working fluid was a 2:l  mixture 
of glycerol and distilled water, with a kinematic viscosity v = 13.57 mrn2s-l at 
27.3"C. 

The third rig was the same as the precision one described above in all aspects 
except the inner cylinder and the end-plates. In this case, the inner cylinder was 
machined from brass to have a 7.4" linear taper along a length of 100.0 mm. The 
diameter at the base was equal to 58.0 mm, while at the top it was equal to 32.0 
mm. The horizontal end-plates were again made out of PTFE, but were cut in such a 
way that one fitted around the base of the inner cylinder while the other fitted at the 
top. This prevented any change in the positions of the end collars, which were held 
at a fixed vertical separation of 100.0 mm. The working fluid in this case was a 1:l 
mixture of distilled water and glycerol, with v = 6.55 mm2sP1 at 27.3"C. 

The driving mechanism for each of the three stadium rigs described above consisted 
of a stepping motor which was connected to the inner cylinder via a 6: l  reduction 
gearbox and a pulley system. The angular velocity of the inner cylinder was directly 
proportional to the frequency of the driving signal which was supplied to the stepping 
motor. This frequency was stable to better than 0.1% over the course of the 
experiments. 

3.2. Dimensionless parameters 
There are three dimensionless parameters which describe the systems with right- 
circular inner cylinders. The Reynolds number Re is defined as Re = wrdlv ,  where 
w is the angular speed of the inner cylinder, r is the.radius of that cylinder, d is the 
minimum gap between the inner and outer cylinders and v is the kinematic viscosity 
of the working fluid. Also, there is the aspect ratio r which is defined as r = h / d ,  
where h is the height of the flow domain. Finally, there is a parameter q which 
is defined as the ratio of the inner cylinder diameter to the perpendicular distance 
between the straight sides of the outer stadium. Thus q is the equivalent of the radius 
ratio parameter which is used in describing the standard Taylor-Couette system. 
A value of q = 0.824 was used for the majority of experiments involving the two 
right-circular stadium systems. However, some experiments were done with q = 0.800 
in the second system. 

For the system with the tapered inner cylinder, we define the Reynolds number as 
Re = wr,,dmin/v, where once again w is the angular speed of the inner cylinder, but 
now r,, is the maximum radius along the length of the tapered cylinder, and dmin is 
the absolute minimum gap between the inner cylinder and the stadium. The choice 
of r,,,, and consequently dmin, was motivated by experimental observations showing 
that features in the flow field are driven predominantly by the larger radius (see $5). 
Here, we have rmX = 29.0 mm and dmin = 8.5 mm. 
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3.3. Data acquisition and analysis 

A laser-Doppler velocimeter (LDV) was used to obtain quantitative information 
about the flow dynamics. The system is the same one described by Kobine & Mullin 
(1994), where full details can be obtained. The LDV operated in such a way as to 
give a continuous output voltage that was directly proportional to the radial velocity 
component at a chosen point in the flow (see 53.4 below). The resulting velocity 
time-series were analysed using various signal-processing techniques. Principal among 
these was the technique of phase-portrait reconstruction based on singular-value 
decomposition (SVD) as developed by Broomhead & King (1986). 

3.4. Location o j  measuring points 

An important consideration is the position within the flow at which point measure- 
ments should be made. The results from 52 for the two-dimensional flow field prove 
essential in this respect. If time-series are obtained at a measuring point located in 
the middle of either the main rotating flow or one of the recirculations then they are 
found not to be representative of the dynamics as a whole. However, if the measuring 
point is positioned at the interface between the two regions, then the signal is found 
to capture the respective time-dependent motions without undue bias to one or the 
other. 

In order to specify our measuring positions in a way which is reproducible, we define 
three dimensionless Cartesian coordinates x ,  y and z .  The coordinates x E [-1,1] and 
y E [-1,1] are measured along the major and minor axes of the stadium respectively, 
with ( x , y )  = (0,O) corresponding to the axis of rotation of the inner cylinder. The 
third coordinate z is taken in the axial direction, with z = 0 corresponding to the 
bottom end-plate (the location of rmX in the case of the tapered inner cylinder) and 
z = 1 corresponding to the top end-plate. 

All the measurements which are reported in this paper were made at points located 
at x = 0.5 10.05, y = 0.0 1 0.1. This is where the interface between the the main flow 
and the recirculation is expected on the basis of the numerical results in 52. In the 
case of the experiments with right-circular inner cylinders, the axial coordinate was 
fixed at z = 0.5 with an accuracy of approximately 1%. Most of the measurements 
made with the tapered inner cylinder involved a continuous traverse of the measuring 
point from z = 0 to z = 1. However, for the cases where the measuring point was 
fixed, the axial coordinate was z = 0.15, again accurate to 1%. 

4. Experimental results: right-circular inner cylinder 
4.1. Survey of parameter space 

A series of experiments was carried out using the first stadium apparatus which was 
described in 43.1. The LDV was used to observe the time-dependent behaviour of 
the flow over a range of aspect ratio from r = 3 to 11 for q = 0.824. For these 
experiments, a background air-conditioning system was used to control the temper- 
ature of the working fluid. The temperature was monitored continuously and was 
found to vary gradually between 21.0 and 22.0"C over the course of the experiments, 
resulting in a variation in viscosity between 16.9 and 16.7 mm2s-'. Measurements 
of the speed of the inner cylinder were always accompanied by measurements of the 
fluid temperature in order to allow the viscosity, and therefore the Reynolds number, 
to be determined reasonably accurately (approximately 2%) for the purpose of this 
initial series of experiments. 
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FIGURE 3. Parameter-space diagram showing loci of transitions in right-circular system with 
q = 0.824. AB is Hopf bifurcation to singly periodic flow. CD is period-doubling bifurcation. EF is 
reversible transition between' regular and irregular behaviour. 

The main bifurcation set which was obtained using the above set-up is shown in 
figure 3 in the form of a parameter-space diagram whose axes are aspect ratio and 
Reynolds number. Measurements were made at fixed aspect ratio by carefully varying 
the Reynolds number. The initial transition from steady to time-dependent flow is 
marked by the locus AB in figure 3. Hopf bifurcations to singly periodic motion were 
found at the marked positions along this line. We define the dimensionless frequency 
SZ of the oscillation as Q = 2nf/ac, where f is the frequency of the oscillation, 
and o, is the angular frequency of the inner cylinder. Values of s2 !z 0.1 were 
obtained at the onset of oscillation across the whole range of aspect ratio which was 
investigated. 

The Reynolds number was then increased further to investigate the nonlinear 
development of this initial oscillation. For aspect ratios between r = 3 and 7.5, 
the next qualitative change in the motion was that of a period-doubling bifur- 
cation. An example of this transition was recorded at f = 5.0 and is shown 
in figure 4. The phase portrait shown in figure 4(a) was reconstructed from 
time-series data taken at (x, y ,  z )  = (0.5,0,0.5) when the Reynolds number was 
just below the critical value for period-doubling. The result is a singly peri- 
odic limit cycle. The distortion of the limit cycle is due to the presence of har- 
monics in the signal arising from nonlinear effects which result from placing the 
measuring volume at the interface between the rotating flow and the recirculating 
flow. 

The Reynolds number was then increased to just beyond the period-doubling 
bifurcation, resulting in a period-2 limit cycle in phase space as shown in figure 
4(b). It was also possible to observe the next period-doubling bifurcation from the 
period-2 oscillation to one where the period was four times that of the original mode. 
However, the system could not be held in this period-4 window indefinitely because 
of the drift in Reynolds number due to small changes in the temperature of the 
fluid. 
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FIGURE 4. Phase portraits showing period-doubling phenomenon in right-circular cylinder at 
r = 5.0: (a )  period-1 limit cycle at Re = 168.5; ( b )  period-2 limit cycle at Re = 175.2. Both 
attractors sampled at 40 times the fundamental frequency and reconstructed using an embedding 
dimension dE = 20. 

Nevertheless, it proved possible to make relatively accurate measurements (- 2%) 
of the critical Reynolds number for the first period-doubling bifurcation, and this 
was done for several aspect ratios across the range in question. The results are shown 
in figure 3 as the locus CD. The general trend with increasing aspect ratio is for the 
critical Reynolds number for period-doubling (CD) to approach that for the Hopf 
bifurcation (AB). Indeed, for this set-up with q = 0.824, it proved impossible to 
observe a period-doubling bifurcation for aspect ratios greater than that associated 
with point D in figure 3. This suggests that there is a critical aspect ratio at which 
the Hopf and the period-doubling events coalesce. 

The behaviour which has been described so far can be fully understood in the 
context of low-dimensional dynamical systems. However, observations were also 
made of dynamics at higher aspect ratios which do not appear to fall into one of 
the standard low-dimensional categories. The locus EF in figure 3 consists of points 
at which there was a sudden but reversible transition between regular oscillatory 
behaviour and a type of motion which was highly irregular. An example of this 
transition is shown in figure 5 for r = 10.6. The motion at Re = 75.6 consisted of 
a regular oscillation as represented by the reconstructed phase portrait in figure 5(a). 
The dimensionless frequency of the oscillation in the flow had increased continuously 
from SZ = 0.1 at onset to SZ = 0.2 at the parameter values of figure 5(a). 

When the Reynolds number was increased further to Re = 81.7, the dynamical 
behaviour changed qualitatively to the type represented by the phase portrait shown 
in figure 5(b). Colour is used here to indicate the speed of the motion along the 
trajectories in phase space, where red indicates the slowest motion. Thus it can be 
see that the dynamics in phase space consist of relatively stationary behaviour (red) 
punctuated irregularly by large-scale low-frequency excursions (green). The average 
time scale of these excursions is approximately fifty times the rotation period of the 
inner cylinder. 

The Reynolds number was varied carefully between the two values which are 
quoted above, and the flow was observed to alter between the two types of behaviour 
without any evidence of hysteresis. There was also no indication of an intermediate 
sequence of transitions connecting the two qualitatively distinct types of dynamics. 
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Furthermore, phase portraits such as the one shown in figure 5(b)  which were recon- 
structed from the irregular dynamical behaviour show no obvious low-dimensional 
structure, at least when represented in a three-dimensional phase space. It certainly 
did not prove possible to categorize the behaviour as a sequence of well-defined tem- 
poral structures separated by quiescent phases, where ideas of intermittency (Pomeau 
& Manneville 1980) could be applied. Finally, even if the dynamics are contained 
in a slightly higher-dimensional phase space, it remains the case that they originate 
directly from singly periodic behaviour. Such a transition does not form part of the 
established framework of finite-dimensional dynamical systems theory. 

4.2. Robustness of experimental results 

The results described above are, to the best of our knowledge, the first to have 
been obtained from a stadium-shaped Taylor-Couette system. They were gathered 
in experiments carried out on a reasonably accurate apparatus, but it could be 
argued that the observed behaviour may be highly susceptible to small inaccuracies 
particularly in the narrow region formed by the inner cylinder and the plane walls. 
Therefore, we considered it necessary to test the robustness of the observed dynamical 
motion by turning to the second flow rig described in $3. The new apparatus was 
made to a greater geometrical precision than the first version as all lengths were 
improved in accuracy by an order of magnitude. In addition, we incorporated a 
means of controlling the temperature of the working fluid, thereby allowing stricter 
control of the Reynolds number. The parameter q was set initially to q = 0.824 as 
before. 

Irregular behaviour was observed once again at moderately large aspect ratios, but 
to a lesser degree than was the case in the previous system. An example of the motion 
in question is shown in figure 6 for the aspect ratio r = 10.5. The Reynolds number 
was increased slowly from zero until the first appearance of a regular oscillation at 
the Hopf bifurcation. The Reynolds number was then increased to Re = 90.1, where 
the phase-space dynamics changed to the form shown in figure 6. As before, there 
was the irregular occurrence of low-frequency structures (green), along with sections 
of approximately steady behaviour (red). The time scale of an individual excursion 
was approximately fifty times the period of the inner cylinder, which is the value that 
was recorded for similar features in the first system. However, the average extent of 
the quiescent phases is now markedly reduced. 

The form of the phase portrait in figure 6 could certainly support the interpretation 
that the system is close to homoclinicity. The passage of trajectories near an unstable 
fixed point in phase space is liable to give the slowing down and divergence which are 
indicated by the sections coloured red in figure 6. However, a characteristic feature 
of the approach to homoclinicity in a dynamical system is always the continuous 
decrease of mode frequency with variation of the bifurcation parameter. This is not 
observed in this particular case. Indeed, as was noted previously, the frequency of 
oscillation actually increases as the Reynolds number is increased towards the point 
where the dynamics undergo qualitative change. It remains the case that there is an 
apparently sudden and reversible alteration in dynamical characteristics of a type not 
accounted for by conventional dynamical-systems methods. 

Whatever the underlying process, it is seems likely that the stronger irregularity 
observed in the first of the two systems with right-circular inner cylinders is the 
result of a combination of small experimental imperfections. The divergence of 
trajectories seen in figure 6 as the motion in phase space slows down creates a region 
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FIGURE 5(a). For caption see facing page. 

for amplification of any external irregularities which are introduced into the system. 
Mechanisms such as this have been studied in detail by Stone & Holmes (1991). 

All the observations which have been reported up to this point were obtained 
for q = 0.824. However, measurements were also made in the precision apparatus 
with a different right-circular inner cylinder which gave r]  = 0.800. In particular, 
attention focused on the range of aspect ratio where the apparent change from 
finite-dimensional behaviour to non-standard behaviour had been observed previ- 
ously. Results for r ]  = 0.800 are shown in figure 7 as a parameter-space diagram. 
Once again, the sequence of Hopf bifurcation followed by period-doubling bifur- 
cation was recorded. However, it proved impossible to reproduce the transition to 
any form of irregular behaviour at higher aspect ratios similar to that found in the 
previous systems. A possible reason for this absence can be found in the variation 
of the loci of Hopf (GH) and period-doubling (JK) bifurcations in figure 7. As 
was seen in figure 3, the irregular behaviour occurred for aspect ratios above an 
apparent coalescence of the two bifurcations. The loci of bifurcations shown in 
figure 7 approach each other initially, but then diverge with further increase of aspect 
ratio. 

Thus it would appear that the flow dynamics are strongly dependent on the value 
of r ] .  A small change in r]  between the two systems either prevents the simultaneous 
occurrence of a Hopf and a period-doubling event, or at least removes it to an aspect 
ratio which is outside the accessible experimental range. Either way, the existence of 
the irregular behaviour seems to be related, in a sense as yet undetermined, to the 
interaction between these two bifurcations. In addition, the fact that a small change 
(3%) in a geometrical parameter has such a large effect on the dynamics is taken as 
justification for building the second apparatus to a much greater precision. 
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X 

FIGURE 5. Phase portraits showing transition to irregular behaviour at r = 10.6: (a) singly periodic 
oscillation (Re = 75.6), sampled at 50 times fundamental frequency, dE = 25; (b )  irregular behaviour 
(Re = 81.7), dE = 200. 

FIGURE 6. Phase portrait showing irregular behaviour in right-circular system with = 0.824 at 
= 10.5, Re = 90.1. dE = 160. 
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FIGURE 7. Parameter-space diagram showing loci of transitions in right-circular system with 
q = 0.800. GH is Hopf bifurcation to singly periodic flow. JK is period-doubling bifucation. 

4.3. Comparison with other Juid systems 
The observation of period-doubling bifurcations in the stadium over a relatively wide 
range of aspect ratio is at odds with the vast majority of occurrences of period- 
doubling in fluid systems, which are generally restricted to flows of very limited 
spatial extent. Examples include the measurements reported by Libchaber & Maurer 
(1980) of period-doubling in the convection of liquid helium in a small cell where only 
two convective rolls existed. There is also the first observation of period-doubling in 
Taylor-Couette flow by Pfister (1985), who studied single-cell flow at aspect ratios 
much less than one. 

Irregular behaviour similar to that described above was observed by Sullivan & 
Ahlers (1988) in a fluid convection experiment. A binary fluid mixture was con- 
tained in a long rectangular box with a temperature difference between the top 
and bottom surfaces. The system was governed by two dimensionless parame- 
ters, namely the Rayleigh number Ra and a separation ratio Y which determined 
whether concentration gradients helped or hindered convection. Over a certain 
range of the parameter Y ,  it was observed that the first time-dependent flow to 
appear with gradual increase of Ra consisted of slow bursts which were separated 
by irregular intervals that were long on the scale of the vertical thermal diffusion 
time. The transition was found to be reversible, with no evidence of hysteresis. At 
other values of Y ,  however, the onset of time-dependence was observed by Sul- 
livan & Ahlers to take place via a Hopf bifurcation to a regular singly periodic 
mode. 

An experimental study by Mullin (1993b) of flows in a triply connected Taylor- 
Couette system revealed the existence of both low-dimensional behaviour and a 
non-standard transition to irregular motion at one particular aspect ratio. The 
configuration in question consisted of two rotating cylinders placed symmetrically 
inside a larger stationary circular cylinder. Flow was driven by counter-rotation of 
the inner cylinders at equal Speeds, and there was a movable top-plate which defined 
the height of the domain. In this way, the system was governed by a Reynolds 
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number and an aspect ratio, and could be treated in a similar manner to other two- 
parameter systems. The flow was considered at an aspect ratio of r = 3.675 (based 
on the minimum distance between an inner cylinder and the outer container) both 
for quasi-static increases of the Reynolds number from zero and for sudden increases. 
It was observed that the onset of time-dependence in the continuously evolved mode 
occurred as the result of a Hopf bifurcation to a singly periodic state, and that further 
increase of Re resulted in the appearance of a quasi-periodic mode followed by the 
onset of weakly chaotic behaviour. Such a sequence has been observed in a variety of 
fluid systems, and is consistent with the finite-dimensional route to chaos proposed 
by Ruelle & Takens (1971). 

In addition, a steady disconnected mode was located by Mullin in which very 
different dynamics were found to develop. A Hopf bifurcation to singly periodic flow 
was again detected, but this time with much smaller amplitude. On increasing the 
Reynolds number, occasional large-amplitude bursts were observed to occur within 
the otherwise regular oscillation. The average separation between these intermittent 
features decreased as Re was increased. The behaviour was reminiscent of the type-I 
intermittent route to chaos proposed by Pomeau & Manneville (1980). Indeed, it was 
found that the average period of recurrence in the triply-connected Taylor-Couette 
flow close to the first appearance of the bursts scaled in the same way as that predicted 
by Pomeau & Manneville. However, the theory also predicts that there should be a 
low-frequency cut-off in the distribution. This was not observed by Mullin, and it 
was concluded that this transition to chaos was not governed by one of the known 
finite-dimensional mechanisms. 

5. Experimental results: tapered inner cylinder 
We now turn to the case where the rotating inner cylinder is tapered as opposed 

to right circular. The approach was to increase the Reynolds number gradually at 
constant aspect ratio and categorize the different types of flow behaviour which were 
observed. The results of this process are set out below. 

5.1. Steady flow 

For Reynolds numbers up to 89.4, the flow was observed to be steady. Vertical profiles 
of radial velocity revealed a steady 'two-cell' flow structure, where the cells were of 
unequal size. A typical radial velocity profile for this steady flow is shown in figure 
8(a) for Re = 75.7. All such profiles in this study were obtained by traversing the 
measuring point along the line ( x , y )  = (0.5,O) (see 53.4) from the botton end-plate 
to the top at a constant speed of 0.1 mm s-l. The radial velocity component was 
sampled at a rate of 1 Hz during the traverse. Profiles appear skewed with respect 
to the zero velocity line due to the limited precision with which the LDV measuring 
point could be positioned on the major axis of the stadium ( y  = 0). 

The profile shown in figure 8(a) indicates that all the significant secondary flow 
is strongly compressed towards the end where the gap between the inner and outer 
cylinders is narrowest. Close to the bottom collar, the radial flow component is 
directed inward towards the rotating cylinder. As the height of the measuring 
position is increased, the radial flow changes to having the form of an outwardly 
directed jet. With further increase of height, the profile shows there to be a change 
back to weak inward flow over a broad region. Thus there is a small cell being driven 
strongly at the bottom end, with a much larger and weaker cell above it. 
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FIGURE 8. Typical radial velocity profiles for flow in tapered system: (a) steady flow at Re = 75.7; 
(b)  singly periodic flow at Re = 101.0; (c) quasi-periodic flow at Re = 113.6. 

5.2. Singly periodic flow 

The next range of Reynolds number which was identified experimentally was between 
Re = 89.4 and 109.5. In this range, the flow was observed to be singly periodic with 
a dimensionless frequency i2 = 0.087. A typical radial velocity profile, taken at 
Re = 101.0, is shown in figure 8(b). The traverse conditions were the same as those 
used to obtain figure 8(a). Figure 8(b) and others like it are not time-series as such, 
but show rather the overall variation of oscillation amplitude with axial position in 
the flow. The profile in figure 8(b) reveals that there is now a second vortex pair above 
the one which was identified at smaller vales of Re. This second pair was found to 
grow continuously as Re was increased. 

5.3. Quasi-periodic and chaotic $ow 
For Re = 109.5 to 123.2, the oscillatory motion in the flow was found to be quasi- 
periodic, with the second dimensionless frequency equal to 0.012. A typical profile was 
recorded at Re = 113.6 and is shown in figure 8(c). The cellular state here is basically 
the same as that for Re = 101.0. However, the quasi-periodic temporal motion is 
not obvious from the spatial profile. Instead, velocity time-series were recorded from 
a fixed position in the flow domain. In these experiments, the measuring position 
was fixed at (x, y, z )  = (0.5,0,0.15). This position corresponded approximately to 
the maximum spatial amplitude of the oscillation. The velocity time-series were 
used to reconstruct phase-space representations of the dynamics using the methods 
proposed by Broomhead 8z King (1986). Visualization of the phase portraits obtained 
in this way was achieved by means of Poincari sections through the full set of 

I 
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RGURE 9. Poincarb sections through reconstructed phase portraits for tapered system: (a) 
Re = 118.2; (b) Re = 120.9; (c )  Re = 123.2; (d )  Re = 124.2; (e) Re = 124.6. All attractors 
sampled at 50 times the primary frequency with embedding dimension dE = 100. 

trajectories. The results are shown in figure 9 ( a - -  for successively larger values of 
Re. 

The Poincark section shown in figure 9(a) corresponds to Re = 118.2. The presence 
of two loops indicates a torus in phase space, and the fact that the loops are closed 
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implies that the frequencies of the two dynamic modes are incommensurate. On 
increasing the Reynolds number to Re = 120.9, the distribution of points in the 
plane of section, as shown in figure 9(b), becomes non-uniform suggesting the onset 
of frequency locking. The torus becomes fully locked with a frequency ratio of 
11:2 when the Reynolds number is increased to Re = 123.2, as shown in figure 
9(c). 

Thus far, the observed dynamics in the tapered system were all regular. However, 
it was found that a chaotic regime is entered when the Reynolds number is increased 
from the locked state which was shown in figure 9(c). The sequence of PoincarC 
sections in figure 9(d-f) corresponds to Re = 123.6, 124.2 and 124.6 respectively. 
These show the structure of the phase-space torus becoming progressively more 
irregular, indicating the development of chaotic dynamics within the flow. However, 
the chaos is not without structure, as can be seen from the persistence of the two 
distinct loops in the PoincarC section. 

5.4. Non-standard irregular behaviour 

The next qualitative change in the dynamics occurred at Re = 128.1. When the 
Reynolds number was increased to this value, the flow was observed to jump from 
the chaotic state to a regular singly periodic mode. The dimensionless frequency of 
the new oscillation was measured as D = 0.063 independent of Reynolds number 
over the parameter range in which it was observed. On decreasing the Reynolds 
number, the flow did not revert back to the chaotic state until Re = 122.3. There 
was therefore hysteresis between these two types of behaviour. This can be seen from 
the two velocity profiles in figure 10, both of which were recorded at Re = 126.2. In 
figure 10(a), the flow is chaotic, whereas in figure 10(b) the flow is singly periodic and 
regular. 

The final stage of the investigation was to increase the Reynolds number further 
and determine the evolution of the singly periodic mode which appears abruptly at 
Re = 128.1. When this was done, it was found that the dynamics develop continuously 
from regular at Re = 128.1 to highly irregular at Re = 157.7. There is no evidence of 
a sequence of discrete transitions leading to this disordered state. A typical time-series 
of the irregular behaviour was recorded at Re = 152.7, and is shown in figure 11. 
The continuous nature of the transformation can be seen from the sequence of phase 
portraits in figure 12(a-c). Discrete points are plotted at equal time intervals along 
the trajectories. Lines linking successive points are not shown now for the sake of 
clarity. In figure 12(a), the outline of the original limit cycle is still discernible. This 
becomes less so in figure 12(b), until finally in figure 12(c) there is very little obvious 
structure. 

5.5. Estimates of correlation dimension 

Thus we have observed the devlopment of two types of irregular behaviour in the 
tapered stadium system. The first was the result of frequency locking of a phase- 
space torus which then broke down to apparently chaotic motion. The second type 
involved the continuous development of dynamics with no obvious low-dimensional 
characteristics. In order to emphasize this difference, we have applied some standard 
techniques to estimate the correlation dimension of the two types of behaviour. 
The methods used were the same as those developed by Buzug & Pfister (1992) 
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F~GURE 10. Radial velocity profiles at Re = 126.2 showing hysteresis in tapered system: 

(a) chaotic mode; (b)  regular singly periodic mode. 

and Buzug, Stamm & Pfister (1993), which are based on the Grassberger-Procaccia 
method but with improvements to reduce the adverse effects of finite data size 
and experimental noise. Correlation dimensions were calculated as a function of 
embedding dimension, whereby any genuine low-dimensional behaviour gives rise to 
a staturation of correlation dimension for sufficiently large embedding dimension. 

For the case of the first sequence of transitions (illustrated in figure 9), the saturated 
correlation dimension D2 was calculated at various Reynolds numbers from 120 to 
143. Beginning at Re = 120, a value of D2 = 2.0k0.1 was obtained which is consistent 
with the observed phase-space torus (figure 9a). There was a local minimum of 
D2 = 1.5 k 0.1 at Re = 123, corresponding to the stage at which the torus becomes 
fully locked (figure 9c). As the torus broke up, the correlation dimension rose to 
D2 = 2.4 k 0.2 at Re = 126 and remained at this value up to the maximum measured 
Reynolds number of 143. 

However, for the second type of behaviour, there was no observed saturation of 
correlation dimension with embedding dimension. The dimension of the dynamics 
illustrated in figure 12(c) was calculated over a range of embedding dimensions, with 
D2 = 3 at dE = 4 rising to D2 = 6 at dE = 12. Beyond this point, any calculated 
dimension is meaningless due to the finite length of the time-series being analysed. 

Finally, it is interesting to note that the primary oscillatory mode, whose actual 
frequency is 0.066 Hz, develops low-dimensional chaos with increasing Re, while 
the secondary singly periodic mode with a frequency of 0.063 Hz evolves to a state 
with no discernible structure. Such different outcomes from an initial quantitative 
difference of less than 5% suggests that some characteristic feature of the geometry 
may be involved in controlling the dynamics. 
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FIGURE 11. Example of irregular behaviour that develops smoothly from the secondary singly 
periodic mode in the tapered system. Time series of radial velocity component measured at 
( x , y , z )  = (0.5,0,0.15) over 2400 s. Re = 152.7. The right-hand edge of each strip connects to the 
left-hand edge of the one above. 

6. Conclusions 
Understanding the origins of turbulence in fluid flow still presents a fundamental 

challenge despite more than a century of research. Recently, the field of finite- 
dimensional dynamical systems has allowed some progress to be made towards this 
goal. A notable example is Taylor-Couette flow, where ideas from dynamical systems 
have resulted in significant advancements beyond the level of weakly nonlinear 
stability theory. 

In this paper, we have presented experimental results which show that finite- 
dimensional behaviour persists in versions of the Taylor-Couette problem with dis- 
crete 2 2  azimuthal symmetry. Although new flow phenomena were observed, many of 
the finite-dimensional mechanisms associated with the original Taylor-Couette system 
were reproduced in the stadium variants. It is considered significant that this was 
the case even in the absence of travelling waves, which are prohibited by symmetry. 
This fact is taken as further support for the view that low-dimensional dynamics are 
controlled at a fundamental level by codimension-2 points in the parameter space of 
the problem. Such points are only possible in a physical system with finite vertical 
extent. They do not occur in the periodic model of Taylor-Couette flow, which 
supports travelling waves but none of the complicated dynamics which are observed 
experimentally. 

Nevertheless, the question remains as to whether all driven internal flows necessarily 
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FIGURE 12. Phase portraits showing continuous transformation of secondary singly periodic mode: 
(a) Re = 142.8; (b)  Re = 147.7; (c) Re = 152.7. Sampled at 3 Hz d E  = 20. 

give rise to bifurcations. The present study has extended the range of flows for 
which this is the case. However, behaviour of a type other than finite-dimensional 
was observed at moderately large aspect ratio with the tapered inner cylinder. Such 
observations, together with those made by Mullin (1993b) of flow in a triply connected 
Taylor-Couette system, suggest that bifurcation phenomena occur in closed flows as 
a subset of the possible mechanisms for flow transition. 

Further experimental evidence has been given which supports the view put forward 
by Ruelle & Takens (1971) that chaotic flow behaviour can arise after the appearance 
of only a small number of modes. This is in contrast to the well-known Landau 
hypothesis, which views turbulence as the sum of an infinite number of modes. 
Experiments by Gollub & Swinney (1975) on the standard Taylor-Couette problem 
gave what appeared to be the first evidence of the Ruelle-Takens mechanism operating 
in a fluid flow. However, Coughlin & Marcus (1992) have argued that a quasi-periodic 
flow in a system with continuous SO(2) symmetry will appear as only a singly periodic 
flow from the frame of reference which rotates with the primary wave. They therefore 
question the validity of the experimental evidence obtained by Gollub & Swinney. 
Observations of the Ruelle-Takens mechanism are required in fluid systems with 
more generic symmetries. Some such observations have already been made (Gollub 
& Benson 1980; Mullin 19933), but clearly more are required before any firm claims 
can be made. 

Finally, the results of this study emphasize again the need for a systematic approach 
to the investigation of dynamics in fluid flow. Subtle features such as the coalescence 
of lines of bifurcations or the locking and subsequent break-up of a phase-space torus 
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prove to be the key to understanding the dynamics as a whole. Only if the greatest 
of care is exercised can such features be uncovered and resolved. 
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